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Abstract
Localization is posited as the antidote for globalization, but little exists in the way 
of quantifying the micro-scale of small communities. In this paper, the reader's 
attention is drawn towards understanding that social network analysis, Markov 
chains and input-output models are equivalent, and that together these tools can be 
used to map and measure the circulation of currency in a small community. The 
“map” of the economy can be created using social network analysis, in a form 
equivalent  to Markov chains and input-output models, by representing businesses 
as nodes and the percentage of expenses spent  by one business at  another as the 
strength of the edges between the nodes. Markov chain mathematics is used to 
measure the circulation of currency in the economy by calculating the average 
number of transactions (average path length) from where the dollar enters the 
community until it  leaves. This method is equivalent to the multiplier effect from 
input-output models but more granular. An example using a simple loop is 
provided showing different methods of solutions, their equivalence and the impact 
of loops on the average number of transactions in a small economy.
Keywords: currency, circulation, community, multiplier effect, localization

1.0  Introduction – Circulation of Currency
Three tools (social network analysis, Markov chains, and input-output models) are 
examined for their ability to calculate the average number of times a dollar 
circulates within a community before exiting. None of the three tools can do this 
calculation single-handedly, but together these tools offer a method for so doing. 
Research into academic literature has failed to find other examples of using this 
approach, although some authors appear to come close, without completing the 
picture. For example, Kichiji & Nishibe (2008) use social network analysis to 
examine the circulation of community currency, an alternative to bank-backed 
money, but  focus on the distribution of the currency flow, rather than the number 
of transactions within the community. Other authors (Hoekstra et  al., 2007; 
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Horváth & Frechtling, 1999) attempt to determine currency circulation using input-
output models, but do not  individualize businesses. Roberts (2005) even focuses on 
rural economies and decomposes the currency flow using structural path analysis, 
coming very close to tracking how a dollar circulates in a rural economy; however, 
this is by sector in an input-output model and not by business. At the risk of 
overgeneralizing, economic theory literature using Markov chains appears to focus 
on national levels, and does not examine local economies with granularity 
(individual businesses).
This paper will show how the three tools are equivalent and can be used 
interchangeably when the data is in the proper form. By using aspects of all three 
tools, this paper will establish a method to map the circulation of currency in a 
small economy, and calculate the number of transactions that occur from the time a 
dollar enters the economy until it leaves. This method is exact and the correct one; 
all other methods are estimations.

1.1  Social Network Analysis (SNA)

A discussion of the development of and uses for social network analysis is better 
left  to the experts; see Wasserman & Faust  (1994), Knoke & Yang (2008), and 
Hanneman & Riddle (2005) for extensive discussions. Only relevant details will be 
included here, for highlighting the connections.
SNA data is built from identifying relationships between any two entities, known 
as “nodes”, within a system, such as people in a community. Connections between 
nodes can be directed (one way) or undirected (both ways), and are also known as 
“edges”. The people in a class are the nodes, and if two people have a relationship, 
there is an edge between the two nodes (see Figure 1.1.1). The connection strength 
may be a 0 (no connection) or 1 (connection), representing a binary relationship, or 
may range in values across any arbitrary scale.

Figure 1.1.1:  Diagram of Basic SNA Components.

Edge

Node Node

A directed connection infers a difference in position and/or reciprocity. A common 
example is Alice loves Bob, but  Bob loves Carol. The connection is one way. In 
contrast, a group of individuals playing a team sport are likely to be clustered with 
undirected connections, indicating a mutually-acknowledged relationship.
Social network data may take one of two forms. The data may be formatted on a line-
by-line basis, where each line represents a connection between two nodes. This form 
has three field values: (a) the originating node, (b) the destination node, and (c) the 
strength of the connection. This format, known as the “DL” format, is the most 
common method for storing SNA data for analysis by software (Hanneman & Riddle, 
2005).
An alternative form uses a matrix, known as the “adjacency matrix.” It represents 
individual nodes as rows, with each column in the row representing a connection to 

Kelly, Cooper, & Pinkerton
Journal of Rural and Community Development 9, 3 (2014) 118-141 119



the nodes in the system, including itself. This is often denoted in summation 
notation, and used for the calculation of several metrics relating to positions within 
the network by individual nodes.

1.2  Markov Chains

Markov chains are based on the 1907 work of A. A. Markov, who studied 
probability of transitions between multiple states (Grinstead & Snell, 1997, p. 
405). These transitions can be sequential, leading to the concept of chains. For 
example, an object may go from State A to State B to State C, or it  may go from 
State A to State D. The probability of finding the object in State A, B, C, or D at 
any given point in time is the focus of Markov chain mathematics.
The transitions are usually formatted as a matrix, with each row indicating the 
probability of transitioning to a different  state. If a state cannot be left once arrived 
at  (the probability of transitioning to another state is 0), the Markov chain is known 
as an “absorbing Markov chain” (Grinstead & Snell, 1997, p. 416). There is a 
“canonical form” of transition matrices, with the states that can transition to other 
states at  the top of the matrix, and the absorbing states at  the bottom. It  is not 
necessary to include any state that  an object may exist  in prior to entering the 
system.
In analyzing the absorbing Markov Chain, only the transitional states are 
examined. The absorbing states are omitted. The “fundamental matrix” is of the 
form:

1.2.1

1. Framing

2. CirculationCurrency

2.1. MarkovChains.

N = [I �Q]�1(2.1.1)

L = [I �A]�1(2.1.2)

aij =
value of inputs from sector i bought by sector j

total value of the output of sector j
(2.1.3)

A =

⇤

⌥⌥⌥⌥⌥⇧

a11 a12 · · · a1n�1 a1n
a21 a22 · · · a2n�1 a2n
...

...
. . .

...
...

an�11 an�12 · · · an�1n�1 an�1n

an1 an2 · · · an�1n�1 ann

⌅

�����⌃
(2.1.4)

I =

⇤

⌥⌥⌥⌥⌥⇧

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⌅

�����⌃
(2.1.5)

[I �A]�1 =

⇤

⌥⌥⌥⌥⌥⇧

1� a11 �a12 · · · �a1n�1 �a1n
�a21 1� a22 · · · �a2n�1 �a2n
...

...
. . .

...
...

�an�11 �an�12 · · · 1� an�1n�1 �an�1n

�an1 �an2 · · · �an�1n�1 1� ann

⌅

�����⌃

�1

(2.1.6)

A =

�

↵↵↵↵↵↵ 

enter Bus.X Bus.Y Bus.Z exit(2.1.7)

enter 0 0.2 0.5 0.3 0

Bus.X 0 0 0.35 0.45 0.3

Bus.Y 0 0 0 1 0

Bus.Z 0 1 0 0 0

exit 0 0 0 0 1

⇥

������⌦

L = [I �A]�1 =
1

det|[I �A]|adj([I �A])(2.1.8)

1

where I is the identity matrix and Q is the matrix formed by the transition states, 
and the exponent of -1 means invert  the matrix (Grinstead & Snell, 1997, p. 418). 
The average number of transitions from any state to an absorbing state and the 
number of times other states will be entered before reaching an absorbing state can 
be calculated from the elements in the rows of N. Markov chains have been applied 
to a wide range of subjects, including queuing theory, ecological food webs, 
genetics, games, and information theory.
One inspiration for this article is Althoen et al.’s (1993) “How long is a game of 
Snakes and Ladders?” in which they used Markov chains to calculate the average 
number of turns for the game in a given layout. That article provided the 
conceptual foundation for modeling a small economy as a game of Snakes and 
Ladders (also known as Chutes and Ladders) and using Markov chains. When the 
economic data forming input-output  models are normalized, input-output  models 
are identical to Markov chains.

1.3  Input-output Models

The input-output  model was developed in the late 1930s by Wassily Leontief, as a 
method of calculating the required output necessary by upstream industries to meet 
input  needs of downstream industries as those downstream industries' output 
changes (Miller & Blair, 2009, p. 1). These demand requirements can be written as 
linear equations, representing the total demand for a given industry, and these 
linear equations can be expressed in matrix form. The Leontief inverse represents 
the "total requirements" of the included industries, recognizing their 
interdependence:
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1.3.1

APPENDIX B: PROOF OF EQUIVALENCE OF SOCIAL NETWORK
ANALYSIS, MARKOV CHAIN TRANSITION AND INPUT-OUTPUT

MATRICES

Following the methodology explained in Miller and Blair (2009), the Leontief inverse
matrix is composed of

L = (I �A)�1(1)

where I is the identity matrix and A is composed of the technical coe⇥cients aij . These
technical coe⇥cients are built from the value of the inputs divided by the total value of
the outputs for the sector.

aij =
value of inputs from sector i bought by sector j

total value of the output of sector j
(2)

If zij is the value of the inputs from sector i bought by sector j and xj is the total value
of the output of sector j, the expression becomes

aij =
zij
xj

(3)

It is not a requirement that technical coe⇥cient values be normalized, i.e.,

�
i zij
xj

⇥= 1(4)

but these values are all less than 1. In an input-output model, goods flow from i to j -
and by inference, currency flows in reverse, from j to i.

Let sij be the percent of sector i’s expenses that go to each sector j. If the total expenses
of sector i are included, including profit as an absorbing value on the diagonal (i = j), then
the scale of the coe⇥cients a and s are the same.

sij =
cost of inputs from sector j bought by sector i

total costs of sector i
(5)

Social network analysis creates matrices using the strength of the relationship from i to
j. These strengths can be normalized.

This di�erence in direction (flow of goods vs. flow of currency) means that the matrix of
technical coe⇥cients A from input-output models is the transpose of the matrix mapping
the strength of the relationships in social network analysis, i.e.,

1

where I is the identity matrix and A is the matrix of the input-output  coefficients aij 
calculated by the value of the input material i purchased by sector j divided by the 
value of the industry j (Miller & Blair 2009, p. 21).
One form of a "multiplier effect" can be calculated from the Leontief inverse. This 
form of the multiplier effect  is the direct, indirect and induced increases in 
economic output  necessary to support a given increase in output by a specific 
industry. If labor is one of these industries, the increased number of jobs can be 
calculated. Some of these jobs will directly come from the industry, some jobs will 
be indirectly created from industries that produce products used as raw materials 
(inputs) for the industry that is increasing its output, and some jobs will be 
"induced" through increases in these supplier industries.

1.4  Equivalence

In their development of Markov chains, Ching & Ng (2006, p. 3) define the 
transition matrix P to be the matrix form of ∑pij where pij is the probability of 
transitioning to state j from state i. In contrast, Breuer & Baum (2005) define the 
probability pij to be from state i to state j, the inverse of Ching & Ng, but consistent 
with Bose (2002, p. 149). Breuer & Baum (2005, p. 81) refer to the "system of 
traffic equations," while Bose (2002, p. 153) refers to "flow balance equations." 
These equations are the same as those that form the basis of an input-output model, 
as given by Miller & Blair (2009, p. 19). Bose also explicitly connects these 
equations to the matrix form that  closely resembles the Leontief inverse. Some 
notable differences between Markov chains and Leontief inverses exist. Leontief 
inverses do not have a concept  of an "absorbing state," nor are the matrices 
organized in a specific form. Additionally, the matrix of technical coefficients is 
constructed vertically instead of horizontally as with Markov chains.
However, these methods result in identical calculations, as long as there is 
recognition as to whether the matrix was constructed horizontally (SNA-style) or 
vertically (input-output  model-style). The relevant  data is extracted from either the 
first  row or first column, respectively. As a result, the average path length of a 
social network from point  A to point  B is identical to the average path length of a 
Markov chain and both are the same as the multiplier effect  in input-output models 
(see Appendix A for a short  proof). Since the average path length and the Leontief 
inverse are constructed and calculated in identical ways, and the Leontief inverse is 
a widely-accepted method for calculating the multiplier effect, the conclusion is 
that the average path length for a dollar entering a community until it  exits is the 
same as the multiplier effect, on a more granular scale. Furthermore, social 
network analysis tools can be used to construct the map of the community's 
economy and the data from the map can be analyzed with Markov chains to 
determine the average path length (multiplier) for that community.
Degenne & Forsé (1999) demonstrate that  social network analysis is based in 
graph theory. The identification of a correspondence between graph theory and 
economic modeling is attributed to "Koopmans [(1951)] and Morgenstern 
[(1954)]" in Asger Olsen (1992, p. 365). Lesne (2006, p. 239) highlights the "deep 
and operational relation between graph theory and Markov chain theory, the former 
providing demonstrative and constructive tools to the latter." Graph theory is 
fundamentally concerned with networks of all kinds, and utilizes matrices for 
calculations (Wallis, 2007). It  is, in fact, graph theory that  unifies all three: (a) 
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input-output models, (b) social network analysis, and (c) Markov chains. This 
allows the tools from one field to be used in analyzing data from the other fields.

2.0  Loops

2.1  Social Network Analysis Focuses on Shortest Paths, not Average 
Paths

Social network analysis focuses primarily on the shortest  path between two nodes, 
called the geodesic path (Knoke & Yang, 2008). The contribution by loops is not 
normally considered. A review of the books on social network analysis by 
Wasserman & Faust (1994), Knoke & Yang (2008), and Friemel (2008) lack any 
mention of calculating the impact  of loops, and only Friemel actually mentions 
loops at  all. While not  specifically a book on social network analysis, Newman's 
(2010) treatment of networks includes applications to social sciences, and contains 
a thorough discussion of average path lengths in a network with loops (examined 
as "random walks," a term from Markov chains), as well as several other useful 
calculations, including the number of possible paths in a network with loops. 
Consideration of loops within social networks can be seen as a reinforcement of 
social capital, in the same manner in which economic activity increases in the 
presence of loops, as will now be shown.

2.2  Mapping and Calculating the Impact of Loops

For illustrative purposes comparing matrices with a geometric series solution, an 
example of mapping using the smallest possible network that can contain a loop 
will be used.
Consider two economic chains, with an equal number of businesses (see Figure 
2.2.1a and Figure 2.2.1b). The blue circle represents currency entering the 
community and the red circle represents it leaving. For the chain represented in 
Figure 2.2.1a, assuming each business spends 100% of its expenses with the next 
business in the chain, the total economic activity is the sum of the transactions. If 
each transaction is $100, and each arrow represents a transaction, the total 
economic activity is $400 (dollars flow in the direction of the arrows, products and 
services flow in the opposite direction).

Figure 2.2.1a: Five Nodes in a Chain. Figure 2.2.1b: Five Nodes with a 
Loop.
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For the chain represented in Figure 2.2.1b, the situation is different. Let P be the 
probability that the dollar will circulate through the loop (see (A) in Figure 2.2.2), 
while 1-P is the probability the dollar will escape (see (B) in Figure 2.2.2). Let  R 
be the length around the loop of green circles (See (C) in Figure 2.2.2, R is equal to 
3), and let  S be the length from the blue circle to the red circle (see (D) in Figure 
2.2.2, S  is equal to 2). The path length L is the average number of times a dollar 
circulates before escaping to the red circle. This is calculated from the weighted 
probability the dollar escapes. Each dollar has a probability P of looping each time, 
adding the length of the loop to the dollar's path length. A dollar that  escapes 
contributes to the average path length of the economy its path length to that point 
multiplied by the probability it escapes.
Figure 2.2.2: Components of a Simple Five Node Loop.2 APPENDIX B: SOLUTION TO THE FOUR NODE LOOP

P

(a) Recirculating with probability P .

1-P

(b) Exiting with probability 1� P .

R

(c) Recirculation length R

S

(d) Straight length S

Figure 2. Identifying components of the four node loop.

A dollar has a probability P ·P of circulating for a second loop. If it does, its average path
length is

L2 = (1� P ) · P · P · (2 ·R+ S)(2.3.3)

While the recirculation loop R included twice, for the two loops, the probability P · P
of looping twice shows a decreasing contribution to the total average path length. This
continues indefinitely, as there is a non-zero probability of continuing to loop, even after
circulating a large number of times. The total path length is the sum of average path loops,
up to an infinite number of loops.

L̄ = L0 + L1 + L2 + L3 + L4 + · · ·L�(2.3.4)

L̄ = (1� P ) · S(2.3.5)

+ (1� P ) · P · (R+ S)

+ (1� P ) · P · P · (2 ·R+ S)

+ (1� P ) · P · P · P · (3 ·R+ S)

+ · · ·
+ (1� P ) · P�(⇥ ·R+ S)

If the percentage of recirculation is 50%, half of the dollars escape during each 
period of time, but half recirculate. Although the economic impact of this 
recirculation diminishes as half escapes each loop, the contribution to the 
economic activity remains for many loops. For example, if a dollar escapes directly 
with probability 1-P (see (B) in Figure 2.2.2), the contribution to the average path 
length of the system is:

(2.2.1)

APPENDIX B: SOLUTION TO THE FOUR NODE LOOP

1. Framing

2. CirculationCurrency

2.1. MarkovChains.

2.2. Measuring Circulation.

2.3. Applying the tools. The simplest loop worth examining consists of three nodes,
plus one node representing the departure from the local economy. A two node loop is
merely a net exchange and not worth examining. Figure 1 depicts this simple loop. P
represents the probability that the dollar will circulate through the loop (see Figure 2a),
while 1� P is the probability the dollar will escape (see Figure 2b). Let S be the length
from the blue circle to the red circle (see Figure 2c), and let R be the length around the
loop of green circles (See Figure 2d). The path length L is the average number of times
a dollar circulates before escaping to the red circle. This is calculated from the weighted
probability the dollar escapes. Let P be the probability the dollar recirculates, and 1-P is
therefore the probability the dollar escapes. A dollar that escapes contributes its average
path length times the probability it escapes. Each dollar has a probability P of looping
each time, times the path length of the loop. For example, if a dollar escapes directly (0
loops), its average path length is

L0 = (1� P ) · S(2.3.1)

If the dollar circulates once and then escapes, its average path length is the probability it
looped times the probability it escaped time the sum of the length of the loop (R) plus the
length of the path to escape (S)

L1 = (1� P ) · P · (R+ S)(2.3.2)

Figure 1. A simple four node loop.

1

If the dollar circulates once and then escapes, its average path length is the sum of 
the length of the loop (R) plus the length of the path to escape (S) (the total number 
of nodes it  passed through before escaping), times the probability P it looped one 
time, times the probability 1-P it escaped after that one loop:

(2.2.2)

APPENDIX B: SOLUTION TO THE FOUR NODE LOOP

1. Framing

2. CirculationCurrency

2.1. MarkovChains.

2.2. Measuring Circulation.

2.3. Applying the tools. The simplest loop worth examining consists of three nodes,
plus one node representing the departure from the local economy. A two node loop is
merely a net exchange and not worth examining. Figure 1 depicts this simple loop. P
represents the probability that the dollar will circulate through the loop (see Figure 2a),
while 1� P is the probability the dollar will escape (see Figure 2b). Let S be the length
from the blue circle to the red circle (see Figure 2c), and let R be the length around the
loop of green circles (See Figure 2d). The path length L is the average number of times
a dollar circulates before escaping to the red circle. This is calculated from the weighted
probability the dollar escapes. Let P be the probability the dollar recirculates, and 1-P is
therefore the probability the dollar escapes. A dollar that escapes contributes its average
path length times the probability it escapes. Each dollar has a probability P of looping
each time, times the path length of the loop. For example, if a dollar escapes directly (0
loops), its average path length is

L0 = (1� P ) · S(2.3.1)

If the dollar circulates once and then escapes, its average path length is the probability it
looped times the probability it escaped time the sum of the length of the loop (R) plus the
length of the path to escape (S)

L1 = (1� P ) · P · (R+ S)(2.3.2)

Figure 1. A simple four node loop.

1

A dollar has a probability P * P of circulating for two loops, but  escaping with 
probability 1-P. If it does escape after two loops, its average path length is

(2.2.3)

2 APPENDIX B: SOLUTION TO THE FOUR NODE LOOP

P

(a) Recirculating with probability P .

1-P

(b) Exiting with probability 1� P .

R

(c) Recirculation length R

S

(d) Straight length S

Figure 2. Identifying components of the four node loop.

A dollar has a probability P ·P of circulating for a second loop. If it does, its average path
length is

L2 = (1� P ) · P · P · (2 ·R+ S)(2.3.3)

While the recirculation loop R included twice, for the two loops, the probability P · P
of looping twice shows a decreasing contribution to the total average path length. This
continues indefinitely, as there is a non-zero probability of continuing to loop, even after
circulating a large number of times. The total path length is the sum of average path loops,
up to an infinite number of loops.

L̄ = L0 + L1 + L2 + L3 + L4 + · · ·L�(2.3.4)

L̄ = (1� P ) · S(2.3.5)

+ (1� P ) · P · (R+ S)

+ (1� P ) · P · P · (2 ·R+ S)

+ (1� P ) · P · P · P · (3 ·R+ S)

+ · · ·
+ (1� P ) · P�(⇥ ·R+ S)
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While the recirculation loop R is included twice, for the two loops, the probability 
P * P of looping twice shows a decreasing contribution to the total average path 
length.  This continues indefinitely, as there is a non-zero probability of continuing 
to loop, even after circulating a large number of times. The total path length 
(denoted ) is the sum of the path lengths, up to an infinite number of loops.

(2.2.4)

2 APPENDIX B: SOLUTION TO THE FOUR NODE LOOP

P

(a) Recirculating with probability P .

1-P

(b) Exiting with probability 1� P .

R

(c) Recirculation length R

S

(d) Straight length S

Figure 2. Identifying components of the four node loop.

A dollar has a probability P ·P of circulating for a second loop. If it does, its average path
length is

L2 = (1� P ) · P · P · (2 ·R+ S)(2.3.3)

While the recirculation loop R included twice, for the two loops, the probability P · P
of looping twice shows a decreasing contribution to the total average path length. This
continues indefinitely, as there is a non-zero probability of continuing to loop, even after
circulating a large number of times. The total path length is the sum of average path loops,
up to an infinite number of loops.

L̄ = L0 + L1 + L2 + L3 + L4 + · · ·L�(2.3.4)

L̄ = (1� P ) · S(2.3.5)

+ (1� P ) · P · (R+ S)

+ (1� P ) · P · P · (2 ·R+ S)

+ (1� P ) · P · P · P · (3 ·R+ S)

+ · · ·
+ (1� P ) · P�(⇥ ·R+ S)

(2.2.5)

2 APPENDIX B: SOLUTION TO THE FOUR NODE LOOP

P

(a) Recirculating with probability P .

1-P

(b) Exiting with probability 1� P .

R

(c) Recirculation length R

S

(d) Straight length S

Figure 2. Identifying components of the four node loop.

A dollar has a probability P ·P of circulating for a second loop. If it does, its average path
length is

L2 = (1� P ) · P · P · (2 ·R+ S)(2.3.3)

While the recirculation loop R included twice, for the two loops, the probability P · P
of looping twice shows a decreasing contribution to the total average path length. This
continues indefinitely, as there is a non-zero probability of continuing to loop, even after
circulating a large number of times. The total path length is the sum of average path loops,
up to an infinite number of loops.

L̄ = L0 + L1 + L2 + L3 + L4 + · · ·L�(2.3.4)

L̄ = (1� P ) · S(2.3.5)

+ (1� P ) · P · (R+ S)

+ (1� P ) · P · P · (2 ·R+ S)

+ (1� P ) · P · P · P · (3 ·R+ S)

+ · · ·
+ (1� P ) · P�(⇥ ·R+ S)

This can be solved by recognizing Eqn. 2.2.5 is a geometric series of the form:

(2.2.6)

APPENDIX B: SOLUTION TO THE FOUR NODE LOOP 3

This equation can be reduced to a summation, recognizing that (1 � P ) can be factored
out, and that each loop is a power of P and a multiple of R:

L̄ = (1� P ) ·
��

n=0

[Pn · (Rn+ S)](2.3.6)

Solving this requires distributing the (Pn) term and determining the value for the two
summations, pulling out the constants R and S:

L̄ = (1� P ) · [R ·
��

n=0

nPn + S ·
��

n=0

Pn](2.3.7)

These two geometric series converge for all P < 1. Let r equal the series on the right and
s equal the series on the right:

r =
��

n=0

nPn(2.3.8)

s =
��

n=0

Pn(2.3.9)

Solving s first is easier and the results will be used to solve r.

s =
��

n=0

Pn = 1 + P + P 2 + P 3 + P 4 + · · ·+ P�(2.3.10)

P · s = P ·
��

n=0

Pn =
��

n=0

Pn+1 = P + P 2 + P 3 + P 4 + · · ·+ P�(2.3.11)

s� P · s = 1 + [P � P ] + [P 2 � P 2] + [P 3 � P 3]

+ [P 4 � P 4] + · · ·+ [P� � P�]

(1� P ) · s = 1

s =
1

1� P
��

n=0

Pn =
1

1� P
(2.3.12)

Continuing with r:

where P is less than 1, and has the converging solution

(2.2.7)
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= 1 + P + P + P + P
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¯

L = 1 + 3 · (
1X
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n � 1)(2.4.19)
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¯
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P
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) · 3 + 1(2.4.20)
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(2.4.22)

The average path length (the number of times a dollar circulates) in the above five-
node network is the ratio of the probability the dollar will recirculate to the 
probability it  escapes times the length of the loop, plus the length of the straight 
route.

2.3  Matrix Form

The five-node network can be represented as a matrix, identical in form to the 
matrix form found in social network analysis where the edges are represented in 
the rows, as opposed to the columns as in input-output matrices (see Section 1.4). 
Instead of a binary 0 or 1, the strength of the connection between the two nodes is 
a number between 0 and 1, representing the probability of a dollar going to the 
downstream node. Exiting the loop is represented as an absorbing state, with a 
probability of 1 that  the state will transition to itself. Each row in the matrix is a 
business, with the exception of the last  one, which is exiting the loop. Each column is 
also a business, downstream of the business represented in the row. For example, 
Business X has a probability P of spending a dollar locally with Business Y, and a 
probability 1-P of spending a dollar with a business outside of the local area (see 
Figures 2.2.2a and 2.2.2b).
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(2.3.1)

2

2.3. A local economy as a Markov chain.

A =

�

↵↵↵↵ 

Bus.X Bus.Y Bus.Z exit(2.3.1)

Bus.X 0 P 0 1� P

Bus.Y 0 0 1 0

Bus.Z 1 0 0 0

exit 0 0 0 1

⇥

����⌦

2.4. Measuring circulation.

A =

�

↵↵↵↵↵↵ 

enter Bus.X Bus.Y Bus.Z exit(2.4.1)

enter 0 1 0 0 0

Bus.X 0 0 P 0 1� P

Bus.Y 0 0 0 1 0

Bus.Z 0 1 0 0 0

exit 0 0 0 0 1

⇥

������⌦

L = [I �A]�1 =
1

det|[I �A]|adj([I �A])(2.4.2)

1

x
= 1 + x+ x2 + x3 + · · ·(2.4.3)

L = [I �A]�1 = I +A+A2 +A3 + · · ·(2.4.4)

A =

⇤

⌥⌥⇧

0 P 0 1� P
0 0 1 0
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0 0 0 1

⌅

��⌃(2.4.5)
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⇤
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��⌃(2.4.6)
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⌅

⌃(2.4.7)

I =

⇤
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0 1 0
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⌃(2.4.8)

The identity matrix I is:

(2.3.2)
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⇥

⌅
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(2.4.9)
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�
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⇤
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A3 = A2 ·A =

�

⇤
0 0 P
1 0 0
0 P 0

⇥
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⌅(2.4.10)

A4 = A3 ·A =
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A6 = A5 ·A =
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Constructing the Leontief inverse/fundamental matrix:

(2.3.3)
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[I �A]I[I �A]�1 = [[I �A]I]L =

�
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1 �1 0 0 1 0 0 0
0 1 �P 0 0 1 0 0
0 0 1 �1 0 0 1 0
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⇥

⌃⌃⌅L(2.4.38)

G =

⌥n
i=1

⌥n
i=1 |xi � xj |
2n2µ

(2.4.39)

Given four members of the set (Alexandra, Bob, Carl, and Doug), let

x1 = Alexandra’s share(2.4.40)

x2 = Bob’s share

x3 = Carl’s share

x4 = Doug’s share

x1 = 1(2.4.41)

x2 = 0

x3 = 0

x4 = 0

The last column and row are dropped, as they correspond to the absorbing state, 
which is omitted in the fundamental matrix, and the inverse is taken of the 
remaining matrix:

(2.3.4)
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[I �A]I[I �A]�1 = [[I �A]I]L =

�
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1 �1 0 0 1 0 0 0
0 1 �P 0 0 1 0 0
0 0 1 �1 0 0 1 0
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⌃⌃⌅L(2.4.38)

G =

⌥n
i=1

⌥n
i=1 |xi � xj |
2n2µ

(2.4.39)

Given four members of the set (Alexandra, Bob, Carl, and Doug), let

x1 = Alexandra’s share(2.4.40)

x2 = Bob’s share

x3 = Carl’s share

x4 = Doug’s share

x1 = 1(2.4.41)

x2 = 0

x3 = 0

x4 = 0

This has the solution:

(2.3.5)
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[I �A]I[I �A]�1 = [[I �A]I]L =

�
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1 �1 0 0 1 0 0 0
0 1 �P 0 0 1 0 0
0 0 1 �1 0 0 1 0

�1 0 0 1 0 0 0 1

⇥

⌃⌃⌅L(2.4.39)

G =

⌥n
i=1

⌥n
i=1 |xi � xj |
2n2µ

(2.4.40)

Given four members of the set (Alexandra, Bob, Carl, and Doug), let

x1 = Alexandra’s share(2.4.41)

x2 = Bob’s share

x3 = Carl’s share

x4 = Doug’s share

Summing the first row:

(2.3.6)
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[I �A] =

�

⇧⇧⇧⇧⇤

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⇥

⌃⌃⌃⌃⌅
�

�

⇧⇧⇧⇧⇤

0 1 0 0 0
0 0 P 0 1� P
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

1 �1 0 0 0
0 1 �P 0 P � 1
0 0 1 �1 0
0 �1 0 1 0
0 0 0 0 0

⇥

⌃⌃⌃⌃⌅

(2.4.37)

L = [I �A]�1 =

�

⇧⇧⇤

1 �1 0 0
0 1 �P 0
0 0 1 �1
0 �1 0 1

⇥

⌃⌃⌅

�1

(2.4.38)

[I �A]I[I �A]�1 = [[I �A]I]L =
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i=1 |xi � xj |
2n2µ

(2.4.40)

Given four members of the set (Alexandra, Bob, Carl, and Doug), let

x1 = Alexandra’s share(2.4.41)

x2 = Bob’s share

x3 = Carl’s share

x4 = Doug’s share

(2.3.7)
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[I �A] =

�

⇧⇧⇧⇧⇤

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⇥

⌃⌃⌃⌃⌅
�

�

⇧⇧⇧⇧⇤

0 1 0 0 0
0 0 P 0 1� P
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

1 �1 0 0 0
0 1 �P 0 P � 1
0 0 1 �1 0
0 �1 0 1 0
0 0 0 0 0

⇥

⌃⌃⌃⌃⌅

(2.4.37)

L = [I �A]�1 =
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1 �1 0 0
0 1 �P 0
0 0 1 �1
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[I �A]I[I �A]�1 = [[I �A]I]L =

�

⇧⇧⇤

1 �1 0 0 1 0 0 0
0 1 �P 0 0 1 0 0
0 0 1 �1 0 0 1 0

�1 0 0 1 0 0 0 1

⇥

⌃⌃⌅L(2.4.39)

G =

⌥n
i=1

⌥n
i=1 |xi � xj |
2n2µ

(2.4.40)

Given four members of the set (Alexandra, Bob, Carl, and Doug), let

x1 = Alexandra’s share(2.4.41)

x2 = Bob’s share

x3 = Carl’s share

x4 = Doug’s share

The average path length is identical to that of the geometric solution found earlier, 
with a loop size R of 3 and an exit length S of 2. The geometric series approach is 
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unwieldy when economies have many entities, while the inverse matrix approach 
can be managed with a spreadsheet (see Appendix B).

2.4  Impact of Recirculation

Using the formula calculated above (Eqn. 2.3.7), the impact  of recirculating dollars can 
be quantified. There are three transactions in the loop R, and the length S is two (from 
blue to green to red). For a probability of recirculation P of .5, the average path length 
(multiplier) is 5:

(2.4.1)

6
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· 3 + 2 =
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· 3 + 2 = 5(2.2.35)
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G = 1� 2B(2.2.40)

B =

⇥ 1

0
L(x)dx(2.2.41)

G = 1� 2

⇥ 1

0
L(x)dx(2.2.42)

L = .25 ⇥ 8.53 + .25 ⇥ 5.23 + .25 ⇥ 2.98 + .25 ⇥ 1.0 = 2.13 + 1.3 + .75 + .25 = 4.435
(2.2.43)

L = .5 ⇥ 8.53 + .1667 ⇥ 5.23 + .1667 ⇥ 2.98 + .1667 ⇥ 1.0 = 5.80(2.2.44)

P (x) =
1

⇥
⇤
2�

e�
(x�µ)

2�2(2.2.45)

⇥(2.2.46)

lij =
change in output in sector i

unit of change in final demand sector j
(2.2.47)

Moutput of j =
n�

i=1

lij(2.2.48)

Figure 2.4.2: Average path length 
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Figure 2.4.2 graphically demonstrates the non-linearly increasing average path 
length 
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 as the probability of recirculation in the three node loop increases.  At P 
= 50%, the average path length is 5, while at P = 75%, the average path length is 
10.
Conversely, Eqn. 2.3.16 can be solved to find the needed inputs to maintain the 
same output  as a function of recirculation, using the multiplier effect in loops to 
enhance the reduced inputs.  Figure 2.2.1b, five nodes with a loop, has a total 
number of transaction opportunities R+S, in this case R=3, and S=2 (refer to Figure 
(C) and (D) in Figure 2.2.2 for identifying R and S).  If there is no recirculation 
(P=0), there are a total of two transactions.  This is the minimum number of 
transactions that can occur and has a gross economic product of:

(2.4.2)
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where i is the dollar amount, in this case, $1.  The effective economic inputs 
needed to maintain this gross economic impact  can be reduced by recirculation.  
The new required economic input can be found by preserving the ratio of the 
original and new gross economic impact being equal to 1 (again, i is equal to 1):
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(2.4.3)
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If local Business A has an initial average number of transactions of 2, but  agrees to 
buy 10% of their needed inputs from local Business B who spends 100% of the 
next  transaction out  of town, the new average number of transactions for Business 
A is 2.1 (.9*2+.1*3=2.1, or alternatively, 1 transaction to get to Business A, .90 of 
the next transaction goes directly out of town while .10 goes one additional 
transaction, for a total of 1+.9*1+.1*2=2.1).  The needed economic inputs to 
Business A can be reduced to 95.24% (2/2.1) while the system still has the same 
gross economic impact.  This reduction in equivalent economic inputs is graphed 
in Figure 2.4.3.

Figure 2.4.3: Needed Inputs for Equivalent Outputs Against a Minimum of 2 
Transactions.

Note the difference in axis between L and i. This creates an illusion that  there is a 
maximum point of efficiency in reduction (equivalent to where the slope is greater 
than -1) somewhere around L=4, but  in actuality this occurs at the square root  of 2, 
meaning that there are diminishing returns in lowering economic inputs for all 
average number of transaction values of interest (the minimum being 2).
In a real-world system, the community forest  would be a node in the middle of a 
chain, with goods and services purchased and benefits distributed downstream and 
access to raw materials sold upstream. That community forest has to balance the 
potentially higher costs of purchasing locally against the lower revenue of selling 
locally at a reduced price. Both work to reduce the net income of the community 
forest, which may impact  its ability to distribute grants to local social-
responsibility groups. In terms of providing access to raw materials locally, within 
a value-added chain, the community forest  can reasonably look at  the chain 
preceding its position for the multiplier effect  and can objectively conclude 
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offering the raw material at  half the price while doubling the local economic 
activity is not  being irrational. The downstream path of the expenses also has the 
same impact; a higher but locally-source quote with added benefits to other local 
businesses can be a rational choice in the face of a lower but non-local quote. 
Community forests may find it quite rational to maximize the local collective 
outcomes through partnerships instead of its own individual outcome in isolation.

2.5  Calculating the Inverse

Microsoft Excel and the Open Office Calc spreadsheet applications can calculate 
the inverses of matrices. This calculation involves three matrices: the transition 
matrix, the identity matrix, and the fundamental matrix. Appendix B gives 
instructions on how to construct these matrices.
Social network analysis software tends to focus on the shortest (geodesic) path 
length between two nodes, without  considering the average path length from one 
node to another. Inclusion of this metric would be a convenient  addition to any 
SNA package. Many packages include a calculation of the "average path length," 
but this is the average of the shortest  paths between all nodes in the system, which 
is not the same. For programming environments, "Gauss-Jordan elimination" is a 
rapid means of finding inverses to matrices. See (Kelly, 2012) for a rigorous 
treatment and sample code, as well as McMahon (2006) and Sewell (2005) for 
foundation.

3.0  Additional Details on Case Study of Dunster, British 
Columbia
As a "proof of concept," the primary author mapped the economy of the small, 
rural natural resource-dependent  community of Dunster in interior British 
Columbia, Canada through surveying businesses about  where their expenses went. 
Additionally, the primary author used the data to calculate the average number of 
times a dollar circulated in the community before exiting the local economy. The 
full details of the case study are available in the companion article by the authors, 
"Quantifying Equity with Messrs. Markov, Lorenz and Gini: A Case Study of 
Dunster, British Columbia," in this issue of JRCD. For brevity in the above article, 
some details were left out that are now included for completeness.

3.1  Qualitative Analysis: Mapping

Social network analysis contributes two major components to collaboration of 
these tools: mapping, and centrality. Figure 3.1.1 shows the map of the economy in 
Dunster.
The arrangement of the network was done manually, with an eye more towards 
aesthetics than any other attribute. During analysis, the primary author realized that 
permission to include the business name in the map was not  asked in the survey. 
There is some evidence that a few businesses were participating with an 
expectation of anonymity. As a result, all publicly available data omits the business 
name. The circles are individual businesses and the lines represent paths that 
currency takes, as expenses of the businesses. The circle in the upper left corner 
represents the dollar entering the economy from outside the community, and the 
circle in the lower right corner represents the dollar exiting the community 
economy. The size of the circles was determined by the business' betweenness 
centrality attribute (Knocke & Yang, 2008). Larger circles mean more currency 
flows through that  business within the community. A visual inspection shows the 
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economy of Dunster to largely be of direct  flow, with no identifiable loops. Money 
appears to pass through Dunster, with a small amount of local expenditures.

Figure 3.1.1: Map of Dunster Economy.

Source: Authors

3.2  Average Number of Transactions: Methodology
As business incomes were not solicited, several models were constructed to 
provide a range of possible values of each business' income as a percentage of the 
total expenses of the outside source of income into the community. These models 
randomized the distribution of incomes to the businesses from outside the local 
community. This distribution used an algorithm from Weisstein (n.d.) (see Eqn. 
3.2.1) to generate a Gaussian (normal) distribution (see Figure 3.2.1a).

(3.2.1)
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The Gaussian distribution is generated from a probability density function, where 
the probability of the value "x" is calculated based on the mean (µ), the value of x 
(which ranges from 0 to 1 with intervals equal to 1/30 for this method, there being 
30 business in the model), and σ, which is proportional to the spread of the 
distribution. Larger σ represent a wider, more even distribution of data.
For the modeling, σ values ranging from 0.0205 to 0.035 correspond to a peak 
value range of 360 and 36 times the least value, respectively. The sum of the values 
was normalized to 1, so with a σ value of 0.0205 the peak value was 0.072, or 
7.2% of the total income into the community, while the least  value was 0.0002, or 
0.02%. This 360:1 ratio represents a distribution of incomes from $1500 to 
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$540,000, a range the primary author believes is realistic based on conversations 
with business owners.

Figure 3.2.1a: Modeled Normal 
Distribution of Income 

Figure 3.2.1b: A Permutation
Normal Distribution of Incomes
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However, this may also represent  a more narrow concentration of income than may 
exist  in the community. At  the lower σ range, the 36:1 ratio represents an income 
range of $5000 to $180,000, which is likely high at  the low end ($5000), and low 
at  the high end ($180,000). However, the distribution is probably more likely near 
the middle of the spread (i.e., the income distribution is probably not truly 
"normal"). Given that  some of the participating businesses were as small as 
individuals selling vegetables from their gardens, these are reasonable estimates of 
the distributions of incomes.
This distribution of shares of currency coming into Dunster was cycled (via 
permutations, see Figure 3.2.1b) against different arrangements of paths through 
the community. Each business has an average number of transactions (path length) 
from that business until the dollar has exited the community. These can be 
arranged in different  models, representing different weightings based on income. 
The arrangement in Figure 3.2.2a represents the paths being centered (clustered) 
about the longest  average path length by a business in Dunster. Figure 3.2.2b 
represents a random arrangement, and Figure 3.2.2c represents an organization to 
minimize the cumulative deviation away from the average number of transactions 
using a simple mean. This approach reduces instantaneous bias from having a sub-
group of businesses with long or short paths.  Figure 3.2.2d shows the effects of 
permutation. (A) in Figure 3.2.2d shows the peak of income aligning with 
businesses with a low number of transactions, while (B) shows the peak of income 
aligning slightly past a cluster of business with more transactions.
These steps were necessary to attempt  to give a realistic answer and avoid bias. For 
example, if the businesses with the longest  average number of transactions are also 
given the largest  percentage of income into the community, the average path length 
for the community will be biased towards a higher number than is realistic. 
Conversations with the business owners in Dunster suggested that there was a 
significant variation of size of the business and that  business' focus on spending 
locally. Some of the largest  businesses spent significantly locally (more than 30% 
of their expenses), but some also had a high level of expenses with non-local 
businesses (perhaps 95%). Conversely, some of the smallest  businesses spent a lot 
locally (more than 75%), while others did not (even 0%). Therefore, the most 
realistic calculation of the average number of transactions is likely to come from 
the range given by the distribution in 3.2.2c, which is generated through avoiding 
clustering of long path businesses.
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Figure 3.2.2a: Normal 
Distribution of Path Lengths

Figure 3.2.2b: Random 
Distribution of Path Lengths
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(A) Modeled Normal Distribution of 
Incomes. 

(B) Rotated Permutation of 
the Normal Distribution of 
Incomes.

Figure 3.2.2d: Visual Example of Permutation of Income 
Distribution Across a Random Distribution of Path Lengths
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3.3  Quantitative Analysis: Markov Chains

The primary author initially analyzed the data for the Dunster area economy using 
custom software code to determine the average number of times a dollar circulated 
within Dunster before leaving the community economy. The primary author wrote 
the custom software to craft the data into a Markov chain-style matrix and used 
Gauss-Jordan elimination to determine the average number of transactions that 
occurred from the time a dollar entered the community until it left the community, 
as well as the number of transactions for a dollar departing from each business 
before it left  the community. Later, using the methods described in Appendix B, 
the primary author reproduced the results with spreadsheet software, with only 
minor differences in calculated values attributable to differences in how 
floating point  operations are done. The data shown below is from the 
spreadsheet calculations using OpenOffice Calc.
A baseline "Measured" value of the number of times a dollar circulated was 
derived from the raw data. A second, "Enhanced" model was constructed to show 
possible opportunities for recirculating local dollars. Not all businesses 
participated in the survey; for the “Measured” model these non-participating 
businesses were modeled as having all of their expenses outside the community. 
The second model, listed as "Enhanced" in Table 3.3.1, modeled 30% of the non-
surveyed businesses' expenses being spent locally, as salary to local owners. 
Personal expenses by residents were not  modeled in the Measured model, but  in 
the Enhanced model, 45% of the aggregate resident expenses were modeled as 
spent locally (an exceedingly unrealistic premise).
Both models were then run against  the two different  σ values, with the different 
arrangements as discussed above. The lowest possible number of transactions is 2; 
the first  brings a dollar into a local business, and the second spends that dollar 
outside the local community.

Table 3.3.1. Average Number of Transactions in Dunster

Model σ = 0.0205 σ = 0.035

Measured range (average) 2.12 - 2.17 (2.14) 2.13 - 2.16 (2.14)

Enhanced range (average) 2.53 - 2.66 (2.58) 2.54 - 2.64 (2.58)

Table 3.3.1 lists the ranges of average number of transactions for both the 
Measured and Enhanced models, using the uniform distribution represented in 
Figure 3.2.2c. Repeated runs of the normally- and randomly-distributed businesses 
showed bias, as expected, towards the minimum and maximum possible number of 
transactions. The results from these distributions were not used.
The effect due to income disparity was minimal, suggesting that  a simple mean of 
the number of transactions (plus one, for the incoming transaction) is sufficient to 
get close to the true number. Additional businesses would make for a wider range 
of possible values, but  beyond a certain point  additional businesses are likely to 
repeat the same paths as other businesses, thereby reinforcing the average.
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3.4  Quantitative Analysis: Transactions vs. Centrality and Degree

Table 3.4.2 lists the number of transactions before a dollar spent by a local 
business exits the community, using "Measured" data, along with many 
commonly calculated attributes used in social network analysis. For brevity, only 
the participating businesses and one example non-participating business are 
included. The betweenness centrality values were used to determine the size of 
the nodes in the map of the economy in Dunster, while In-Degree was used for 
the color (see Figure 3.1.1).

Table 3.4.2. Number of transactions before dollar spent exits community and social 
network analysis attributes for select businesses in Dunster

Business # # Trans-
actions

Eccen-
tricity

Closeness Between-
ness

In 
Degree

Out 
Degree

Degree

30 2.0000 2 1.500 0.000 1 1 2
29 1.7681 2 1.200 0.034 1 4 5
28 1.5547 2 1.250 0.034 1 3 4
26 1.4135 2 1.125 0.034 1 7 8
27 1.3766 2 1.250 0.034 1 3 4
25 1.3547 2 1.200 0.034 1 4 5
24 1.2690 2 1.250 0.034 1 3 4
23 1.2100 1 1.000 0.034 1 2 3
22 1.1345 2 1.333 0.034 1 4 5
21 1.1001 1 1.000 0.034 1 2 3
20 1.0940 1 1.000 8.034 8 3 11
6 1.0000 1 1.000 1.034 11 1 12
8 1.0000 1 1.000 0.034 2 1 3

While the business #20 had highest betweenness, it did not have the longest  path/
highest  number of transactions of its dollars. In fact, 90% of its dollars exited the 
community on the very next transaction, due to the need to obtain goods and 
services from outside the community. While the business was highly respected 
within the community (as shown by the high number of businesses that  engaged in 
transactions with this business), the business is a "drain" on recirculating currency 
locally. This highlights an impediment to recirculating dollars: unless local sources 
of goods and services are present, significant  amounts of currency are lost to 
"importing" those products into the local economy. If the economy is based on 
obtaining those goods and services at the lowest price, currency may move through 
rapidly but very little of it will be accumulated into wealth for the community.
The use of betweenness centrality can help identify businesses that  are well 
situated for recirculating currency within the local community, or conversely, are 
excluded from connection to the local economy. The business with the highest 
number of transactions obtained all of their income for the business from outside 
the local community, and had 100% profit paid themselves as salary to a Dunster 
resident  which was then modeled as leaving the community on the next 
transaction. This inflated their number of transactions, but their betweenness 
centrality reveals the disconnect from the local economy.
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4.0  Conclusions
Through the combination of social network analysis and Markov chains, the 
economy of a small community can be mapped, and the number of transactions a 
dollar takes from the time it enters the economy to when it exits can be calculated. 
As shown in the article, these methods are mathematically identical to the multiplier 
effect of input-output  models, but  more granular through the examination of business 
expenses rather than aggregated sector inputs and outputs. The equivalence of all 
three means that tools from any of the three can be applied to the data from another.
The case study showed a proof of concept, with maps and calculations. These can 
be done with open source software for both the mapping (Gephi) and the 
calculations (OpenOffice). While modeling a range of income distributions is 
useful to get the breadth of possibilities, using a simple mean is sufficient  to be 
nearly accurate. The case study also highlighted that  in rural economies it  may be 
difficult to recirculate dollars within the economy, but that these tools can provide 
models that give direction on where to focus efforts.

5.0  Appendixes

Appendix A: Proof of Equivalence of Social Network Analysis, Markov 
Chain Transition and Input-output Matrices

Following the methodology explained in Miller and Blair (2009, p. 244), the 
Leontief inverse matrix is composed of

(A.1)

APPENDIX B: PROOF OF EQUIVALENCE OF SOCIAL NETWORK
ANALYSIS, MARKOV CHAIN TRANSITION AND INPUT-OUTPUT

MATRICES

Following the methodology explained in Miller and Blair (2009), the Leontief inverse
matrix is composed of

L = (I �A)�1(1)

where I is the identity matrix and A is composed of the technical coe⇥cients aij . These
technical coe⇥cients are built from the value of the inputs divided by the total value of
the outputs for the sector.

aij =
value of inputs from sector i bought by sector j

total value of the output of sector j
(2)

If zij is the value of the inputs from sector i bought by sector j and xj is the total value
of the output of sector j, the expression becomes

aij =
zij
xj

(3)

It is not a requirement that technical coe⇥cient values be normalized, i.e.,

�
i zij
xj

⇥= 1(4)

but these values are all less than 1. In an input-output model, goods flow from i to j -
and by inference, currency flows in reverse, from j to i.

Let sij be the percent of sector i’s expenses that go to each sector j. If the total expenses
of sector i are included, including profit as an absorbing value on the diagonal (i = j), then
the scale of the coe⇥cients a and s are the same.

sij =
cost of inputs from sector j bought by sector i

total costs of sector i
(5)

Social network analysis creates matrices using the strength of the relationship from i to
j. These strengths can be normalized.

This di�erence in direction (flow of goods vs. flow of currency) means that the matrix of
technical coe⇥cients A from input-output models is the transpose of the matrix mapping
the strength of the relationships in social network analysis, i.e.,

1

where I is the identity matrix and A is composed of the technical coefficients aij. 
These technical coefficients are built from the value of the inputs divided by the 
total value of the outputs for the sector.
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If zij is the value of the inputs from sector i bought by sector j and xj is the total 
value of the output of sector j, the expression becomes
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but these values are all less than 1. In an input-output model, goods flow from i to 
j; by inference, currency flows in reverse, from j to i.
Let  sij be the percent  of sector i's expenses that  go to each sector j.  If the total 
expenses of sector i are included, including profit as an absorbing value on the 
diagonal (i = j), then the scale of the coefficients a and s are the same.
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Following the methodology explained in Miller and Blair (2009), the Leontief inverse
matrix is composed of

L = (I �A)�1(1)

where I is the identity matrix and A is composed of the technical coe�cients aij . These
technical coe�cients are built from the value of the inputs divided by the total value of
the outputs for the sector.
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value of inputs from sector i bought by sector j
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but these values are all less than 1. In an input-output model, goods flow from i to j -
and by inference, currency flows in reverse, from j to i.

Let sij be the percent of sector i’s expenses that go to each sector j. If the total expenses
of sector i are included, including profit as an absorbing value on the diagonal (i = j), then
the scale of the coe�cients a and s are the same.

sij =
cost of inputs from sector j bought by sector i

total costs of sector i
(5)

Social network analysis creates matrices using the strength of the relationship from i to
j. These strengths can be normalized.

This di↵erence in direction (flow of goods vs. flow of currency) means that the matrix of
technical coe�cients A from input-output models is the transpose of the matrix mapping
the strength of the relationships in social network analysis, i.e.,

1

Social network analysis creates matrices using the strength of the relationship from 
i to j. These strengths can be normalized.
This difference in direction (flow of goods vs. flow of currency) means that  the 
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matrix of technical coefficients A from input-output  models is the transpose of the 
matrix mapping the strength of the relationships in social network analysis, i.e., 

(A.6)
(A.7)

2APPENDIX B: PROOF OF EQUIVALENCE OF SOCIAL NETWORK ANALYSIS, MARKOV CHAIN TRANSITION AND INPUT-OUTPUT MATRICES

aij = sji(6)

A = S

T(7)

The multiplier e↵ect of an increase in demand of a sector in an input-output model is
derived from the sum of the elements in the first column of the Leontif inverse matrix
(Miller and Blair, 2009, p. 245). The average path length from the first node in a Markov
chain until the exit node is the sum of the elements in the first row of the Leontif inverse
matrix, although the S matrix is minus the row and column associated with the exit node
(Althoen et al., 1993). As such, it is necessary to determine if these are, in fact, the same
values. A few rules about linear algebra are necessary:

The transpose of the identity matrix is the identity matrix:

I = I

T(8)

The transpose of the sum of two matrices is equal to the sum of the transposes of the
matrices (McMahon, 2006, p.46):

(M +N)T = M

T +N

T(9)

This also applies to the di↵erence between two matrices.

The transpose of the inverse of a matrix is equal to the inverse of the transpose of the
matrix (McMahon, 2006, p.54):

(M�1)T = (MT )�1(10)

Let S represent the social network analysis matrix comprised of the strengths as currency
flowing from i to j as sij and let A represent the input-output matrix comprised of the
technical coe�cients of goods flowing from i to j as aij . From (7)

A = S

T(11)

Construction of the Leontief inverse matrix in input-output model:

L = (I �A)�1(12)

or for Markov chain-based social network analysis:

L

0 = (I � S)�1(13)

Let

D = I � S(14)

Substituting into (13),

L

0 = D

�1(15)

The multiplier effect of an increase in demand of a sector in an input-output  model 
is derived from the sum of the elements in the first column of the Leontif inverse 
matrix (Miller & Blair 2007, p. 245). The average path length from the first node 
in a Markov chain until the exit node is the sum of the elements in the first  row of 
the Leontif inverse matrix, although the S matrix is minus the row and column 
associated with the exit node (Althoen et al., 1993). As such, it  is necessary to 
determine if these are, in fact, the same values. A few rules about  linear algebra are 
necessary:
The transpose of the identity matrix is the identity matrix:

(A.8)
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The transpose of the sum (or difference) of two matrices is equal to the sum (or 
difference) of the transposes of the matrices (McMahon 2006, p. 46):

(A.9)
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L

0 = (I � S)�1(13)

Let

D = I � S(14)

Substituting into (13),

L

0 = D

�1(15)

Let S represent  the social network analysis matrix comprised of the strengths as 
currency flowing from i to j as sij and let A represent the input-output  matrix 
comprised of the technical coefficients of goods flowing from i to j as aij. From (A.
7):

(A.1)
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aij = sji(6)

A = S

T(7)

The multiplier e↵ect of an increase in demand of a sector in an input-output model is
derived from the sum of the elements in the first column of the Leontif inverse matrix
(Miller and Blair, 2009, p. 245). The average path length from the first node in a Markov
chain until the exit node is the sum of the elements in the first row of the Leontif inverse
matrix, although the S matrix is minus the row and column associated with the exit node
(Althoen et al., 1993). As such, it is necessary to determine if these are, in fact, the same
values. A few rules about linear algebra are necessary:

The transpose of the identity matrix is the identity matrix:

I = I

T(8)

The transpose of the sum of two matrices is equal to the sum of the transposes of the
matrices (McMahon, 2006, p.46):

(M +N)T = M

T +N

T(9)

This also applies to the di↵erence between two matrices.

The transpose of the inverse of a matrix is equal to the inverse of the transpose of the
matrix (McMahon, 2006, p.54):

(M�1)T = (MT )�1(10)

Let S represent the social network analysis matrix comprised of the strengths as currency
flowing from i to j as sij and let A represent the input-output matrix comprised of the
technical coe�cients of goods flowing from i to j as aij . From (7)

A = S

T(11)

Construction of the Leontief inverse matrix in input-output model:

L = (I �A)�1(12)

or for Markov chain-based social network analysis:

L

0 = (I � S)�1(13)

Let

D = I � S(14)

Substituting into (13),

L

0 = D

�1(15)

Construction of the Leontief inverse matrix in input-output model:

(A.12)
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aij = sji(6)

A = S

T(7)

The multiplier e↵ect of an increase in demand of a sector in an input-output model is
derived from the sum of the elements in the first column of the Leontif inverse matrix
(Miller and Blair, 2009, p. 245). The average path length from the first node in a Markov
chain until the exit node is the sum of the elements in the first row of the Leontif inverse
matrix, although the S matrix is minus the row and column associated with the exit node
(Althoen et al., 1993). As such, it is necessary to determine if these are, in fact, the same
values. A few rules about linear algebra are necessary:

The transpose of the identity matrix is the identity matrix:

I = I

T(8)

The transpose of the sum of two matrices is equal to the sum of the transposes of the
matrices (McMahon, 2006, p.46):

(M +N)T = M

T +N

T(9)

This also applies to the di↵erence between two matrices.

The transpose of the inverse of a matrix is equal to the inverse of the transpose of the
matrix (McMahon, 2006, p.54):

(M�1)T = (MT )�1(10)

Let S represent the social network analysis matrix comprised of the strengths as currency
flowing from i to j as sij and let A represent the input-output matrix comprised of the
technical coe�cients of goods flowing from i to j as aij . From (7)

A = S

T(11)

Construction of the Leontief inverse matrix in input-output model:

L = (I �A)�1(12)

or for Markov chain-based social network analysis:

L

0 = (I � S)�1(13)

Let

D = I � S(14)

Substituting into (13),

L

0 = D

�1(15)

or for Markov chain-based social network analysis:

(A.13)
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aij = sji(6)

A = S

T(7)

The multiplier e↵ect of an increase in demand of a sector in an input-output model is
derived from the sum of the elements in the first column of the Leontif inverse matrix
(Miller and Blair, 2009, p. 245). The average path length from the first node in a Markov
chain until the exit node is the sum of the elements in the first row of the Leontif inverse
matrix, although the S matrix is minus the row and column associated with the exit node
(Althoen et al., 1993). As such, it is necessary to determine if these are, in fact, the same
values. A few rules about linear algebra are necessary:

The transpose of the identity matrix is the identity matrix:

I = I

T(8)

The transpose of the sum of two matrices is equal to the sum of the transposes of the
matrices (McMahon, 2006, p.46):

(M +N)T = M

T +N

T(9)

This also applies to the di↵erence between two matrices.

The transpose of the inverse of a matrix is equal to the inverse of the transpose of the
matrix (McMahon, 2006, p.54):

(M�1)T = (MT )�1(10)

Let S represent the social network analysis matrix comprised of the strengths as currency
flowing from i to j as sij and let A represent the input-output matrix comprised of the
technical coe�cients of goods flowing from i to j as aij . From (7)

A = S

T(11)

Construction of the Leontief inverse matrix in input-output model:

L = (I �A)�1(12)

or for Markov chain-based social network analysis:

L

0 = (I � S)�1(13)

Let

D = I � S(14)

Substituting into (13),

L

0 = D

�1(15)

Let

(A.14)
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aij = sji(6)

A = S

T(7)

The multiplier e↵ect of an increase in demand of a sector in an input-output model is
derived from the sum of the elements in the first column of the Leontif inverse matrix
(Miller and Blair, 2009, p. 245). The average path length from the first node in a Markov
chain until the exit node is the sum of the elements in the first row of the Leontif inverse
matrix, although the S matrix is minus the row and column associated with the exit node
(Althoen et al., 1993). As such, it is necessary to determine if these are, in fact, the same
values. A few rules about linear algebra are necessary:

The transpose of the identity matrix is the identity matrix:

I = I

T(8)

The transpose of the sum of two matrices is equal to the sum of the transposes of the
matrices (McMahon, 2006, p.46):

(M +N)T = M

T +N

T(9)

This also applies to the di↵erence between two matrices.

The transpose of the inverse of a matrix is equal to the inverse of the transpose of the
matrix (McMahon, 2006, p.54):

(M�1)T = (MT )�1(10)

Let S represent the social network analysis matrix comprised of the strengths as currency
flowing from i to j as sij and let A represent the input-output matrix comprised of the
technical coe�cients of goods flowing from i to j as aij . From (7)

A = S

T(11)

Construction of the Leontief inverse matrix in input-output model:

L = (I �A)�1(12)

or for Markov chain-based social network analysis:

L

0 = (I � S)�1(13)

Let

D = I � S(14)

Substituting into (13),

L

0 = D

�1(15)

Substituting into (A.13),

(A.15)
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aij = sji(6)

A = S

T(7)

The multiplier e↵ect of an increase in demand of a sector in an input-output model is
derived from the sum of the elements in the first column of the Leontif inverse matrix
(Miller and Blair, 2009, p. 245). The average path length from the first node in a Markov
chain until the exit node is the sum of the elements in the first row of the Leontif inverse
matrix, although the S matrix is minus the row and column associated with the exit node
(Althoen et al., 1993). As such, it is necessary to determine if these are, in fact, the same
values. A few rules about linear algebra are necessary:

The transpose of the identity matrix is the identity matrix:

I = I

T(8)

The transpose of the sum of two matrices is equal to the sum of the transposes of the
matrices (McMahon, 2006, p.46):

(M +N)T = M

T +N

T(9)

This also applies to the di↵erence between two matrices.

The transpose of the inverse of a matrix is equal to the inverse of the transpose of the
matrix (McMahon, 2006, p.54):

(M�1)T = (MT )�1(10)

Let S represent the social network analysis matrix comprised of the strengths as currency
flowing from i to j as sij and let A represent the input-output matrix comprised of the
technical coe�cients of goods flowing from i to j as aij . From (7)

A = S

T(11)

Construction of the Leontief inverse matrix in input-output model:

L = (I �A)�1(12)

or for Markov chain-based social network analysis:

L

0 = (I � S)�1(13)

Let

D = I � S(14)

Substituting into (13),

L

0 = D

�1(15)

Take the transpose of both sides,

(A.16)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

From (A.10), the transpose of the inverse of D is now the inverse of the transpose of D,

(A.17)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

Reversing the substitution from (B.14)

(A.18)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

From (A.9)

Kelly, Cooper, & Pinkerton
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(A.19)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

therefore

(A.20)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

and from (A.8) and (A.11)

(A.21)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

Substituting into (A.20)

(A.22)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

Taking the inverse of both sides

(A.23)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

Using (A.17)

(A.17)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

and (A.23)

(A.24)
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Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

which concludes with using (A.12)

(A.25)

APPENDIX B: PROOF OF EQUIVALENCE OF SOCIAL NETWORK ANALYSIS, MARKOV CHAIN TRANSITION AND INPUT-OUTPUT MATRICES3

Take the transpose of both sides,

(L0)T = (D�1)T(16)

From (10), the transpose of the inverse of D is now the inverse of the transpose of D,

(L0)T = (DT )�1(17)

Reversing the substitution from (14)

D

T = (I � S)T(18)

From (9),

(I � S)T = (IT � S

T )(19)

therefore

D

T = (IT � S

T )(20)

and from (8) and (11)

(IT � S

T ) = (I �A)(21)

Substituting into (20)

D

T = (I �A)(22)

Taking the inverse of both sides

(DT )�1 = (I �A)�1(23)

Using (17)

(L0)T = (DT )�1

and (23)

(L0)T = (I �A)�1(24)

which concludes with using (13)

(L0)T = L(25)

The Leontif inverse matrix of social network analysis is the transpose of the Leontief
inverse matrix of input-output models. The rows of the Leontif inverse matrix of social
network analysis are equal to the columns of the Leontif inverse matrix of input-output
models, and therefore, the average path length of a social network analysis-based Markov
chain is equal to the multiplier e↵ect of a normalized input-output model.

A frequent solution to the Leontief inverse matrix is the use of Taylor Series expansion
(Lenzen, 2006). However, the Leontief inverse matrix can also be readily solved with the
use of the Gauss-Jordan elimination method, using the identity matrix I as the right hand
side (McMahon, 2006).

The Leontif inverse matrix of social network analysis is the transpose of the 
Leontief inverse matrix of input-output models. The rows of the Leontif inverse 
matrix of social network analysis are equal to the columns of the Leontif 
inverse matrix of input-output models, and therefore, the average path length of 
a social network analysis-based Markov chain is equal to the multiplier effect 
of a normalized input-output model.

Appendix B: Spreadsheet Markov Chains

All of the described calculations can be done in a spreadsheet  if it  can do an 
inverse matrix operation. To do the Markov chain calculations for the average 
number of transactions, create five matrices. The first is the result  of the survey 
of businesses. All matrices for this will be an N+2 x N+2 sized matrix, where N 
is the number of businesses in your community. The first row is the distribution 
of income to each business. The last  row is the node representing the currency 
leaving the community. Each row in between represents a business. The 
columns match the rows, i.e., for each business there is a row and a column. 
The first  column is for income coming in, and the last column is for expenses 
leaving the community. Each column in between is the percentage of expenses 
spent at  the individual community businesses by the business for that  row. 
Expenses leaving the community are entered into the last column, and the last 
row should have only one entry - a 1 in the last column. The first  column 
should be empty.
As mentioned above, the first  row is the distribution of income to each business. 
This may have to be modeled, unless the businesses are willing to provide their 
income amounts (unlikely). For the initial pass of analysis, enter 1 divided by the 
number of businesses for all columns except  the first  (currency entering the 
community) and the last (currency exiting the community).
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The second matrix is the "Identity" matrix. It  is comprised of 1s along the 
diagonal, i.e., row 3 column 3 has a 1, row 16 column 16 has a 1, etc. All other 
entries are 0.
The third matrix is [I-A], where I is the identity matrix and A is the business 
matrix. Each element  in A must  be subtracted from the corresponding element  in 
the identity matrix. This will create several negative number entries, but as long as 
the diagonal is positive there should not be problems.
The fourth matrix is the inverse of [I-A], with the exception of the last  row and 
column. Typically this will look like =MINVERSE(Sheet3.A1:Sheet3.AE31), 
for a 30 business matrix (32 total entries, including the income coming into the 
community, but  the last  row and column are the absorbing node, so are dropped 
from the calculations).
With the successful calculation of the inverse of [I-A], the sum of the each 
business' row of this matrix is the average number of transactions for that  business 
before its dollars leave the community. Create a column for the sum of each row. 
Add 1 to get the total number of transactions, including the one that  puts the dollar 
into the business to begin with. These values will be used to calculate the range of 
values that  constitute the minimum and maximum average number of transactions 
for the community as a whole. This must be done through rotating a distribution of 
incomes, assuming incomes were not collected during surveying.
To create a normal (Gaussian) distribution as a row, which represents a range of 
percentages of total community income distributed to each business, use the 
NORMDIST  command once for each column representing a business (not entering 
and exiting the community). This row will have a 0 in the first and last column, 
representing 0 probability of money returning the entry node or the exit node. In 
between are the columns representing a distribution to each business. The 
NORMDIST  command takes four parameters: a number, the mean, the standard 
deviation, and whether to use the probability density function or cumulative 
distribution form. Starting at the second column, the number parameter is the 
fraction of total businesses represented by that  column, with the number of the 
column minus 1 divided by the total number of businesses being the value in the 
command (COLUMN()-1/N). The mean is 0.5, as the peak of the distribution 
needs to occur halfway between 0 and 1. The sigma parameter is the width of the 
income curve. As discussed earlier, the square root of 0.0205 will represent  a ratio 
of 360:1 of highest income to least income. For the last parameter, enter the value 
appropriate to select probability density function.
This will give a distribution of numbers centered on 0.5. However, the sum of 
these numbers does not  equal 1, which is a necessity for probabilities. 
Therefore, a second row must be created dividing each entry by the sum of the 
first row. This second row forms the basis of the permutations that  will be used 
to determine a high and low number of transactions for your community. The 
permutations cycle the distribution of incomes through all of the businesses, 
creating conditions where the longest path has the chance to have the highest 
income, and the shortest  path has the lowest  income, with variations in 
between. Since the other paths have lesser or greater percentages of the total 
income distribution, the calculated values are averaged out.
The first and last  column of the permutations will remain 0 at  all times. For each 
permutation, though, the columns will shift  to the left, while rolling the left-most 
business (column 2 if column 1 is the income coming into the community) in that 
row over to the end on the right (next  to the exit column). This can be done 
through using the OFFSET command, with the first parameter being the current 
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cell, and then -1 for row and +1 for column. This will move the value one row 
above and one column over into the current  cell. Start at  the second column of the 
first  permutation, enter the appropriate OFFSET  command, and then fill right  until 
one column before the exiting column, then fill down a total number of rows such 
that the full permutation is equal to the number of businesses N.  If you have 30 
businesses, you should now have 31 rows - the first non-normalized row (which is 
not used), then 30 normalized rows with each row shifted one to the left.
Each permutation represents a different distribution of incomes to the local 
businesses. Rather than recalculate the entire fundamental matrix used to 
determine the path lengths, each permutation will be multiplied against the final 
path lengths for the businesses, as a matrix operation. This approach infers that 
each business' contribution to the total average path length for the community is 
that business' path length times the percentage of income distributed to that 
business. For example, a business with an average path length of 2.2 (including the 
first  transaction that brought the dollar to the business) that receives 1% of the total 
distribution of income contributes 0.022 transactions to the overall community 
average number of transactions. Rotating these distributions against the fixed 
number of transactions allows for a more accurate calculation of the average 
number of transactions, by allowing for a high and a low average number of 
transactions.
Figure B.1: Permutations and Lengths.
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Figure B.1 shows the distribution of business transaction numbers, including the 
transaction that brings the dollar to the business, ordered in a relatively random 
way. There appear to be clusters of low numbers of transactions (2) and clusters of 
businesses with higher numbers of transactions (as high as 3.3). Below that  are two 
permutations of the normal distribution curve used to represent income 
distribution, scaled to fit on this graph (the peak of 1 is actually 0.091, or 9.1% of 
the total income). The peak of the income distribution is approximately 15 places 
to the right of the permutation number.  The first permutation, P0, is the original 
normalized distribution, and it  has a peak at  approximately 15 on the horizontal 
axis. The second permutation, P15, is after 15 rotations to the left, and peaks at  the 
0 and 30 locations on the horizontal axis. P0 lines up well against the middle 
cluster of businesses that have a higher than average number of transactions, 
giving them a higher portion of the modeled income distribution. As a result, the 
average number of transactions for the community is near the peak value (as seen 
by the high value for the point at  0 on the horizontal axis in the "average length" 

Kelly, Cooper, & Pinkerton
Journal of Rural and Community Development 9, 3 (2014) 118-141 138



curve). Conversely, P15 lines up nearly opposite to this, with the least  income 
distribution going to the businesses near the middle cluster (and the value of the 
"average length" curve is low near 15 on the horizontal axis). As a result, the 
average number of transactions for this distribution of income to the community is 
near the lowest  value. The curve of the average number of transactions is not a 
perfect reflection of the normal distribution, as there is some flattening.
If the businesses are arranged in an increasing number of transactions, when the 
modeled distribution peaks at the same point as the peak of the businesses, the 
average number of transactions will be artificially increased, as this permutation 
means the businesses with the longest transaction chains also receives the greatest 
percentage of the distribution of income from outside the community. Therefore, 
some randomization is warranted in the absence of specific knowledge of the 
income distribution from outside the community. As a caveat, though, with enough 
randomization and permutations, the average number of transactions for the 
community will tend to range between the least  and highest number of transactions 
by any businesses.
While the "range" is likely to be accurate, a specific single number is often more 
convenient. Using the average of the permutation results is likely close to the true 
number. The article discusses altering the order of the businesses so as to not  allow 
clustering to occur. This narrows the range even more, but  is difficult to achieve 
with a spreadsheet. Not  using permutations, and just using the even distribution of 
income used in the initial calculation will lead to a slightly different  average 
number of transactions. For example, for one undiscussed model of the case study 
published elsewhere in this issue, the randomization of businesses led to a range of 
2.04 to 2.24, with an average of 2.14. Using the initial even distribution of income 
(every business has the same relative income), the calculated path length was 2.19. 
However, the randomizations are susceptible to bias as a result of the choice of the 
spread of the distribution. Determining which number is more accurate is at the 
discretion of the investigator.
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